
Optical Character Recognition with the

Gamera Framework∗

Christoph Dalitz, René Baston

Hochschule Niederrhein

Fachbereich Elektrotechnik und Informatik

Reinarzstr. 49, 47805 Krefeld, Germany

Abstract

Due to its flexibility, the Gamera framework for document analysis and recognition

has been used in the past primarily for very specific document types like ancient

scripts and music notations. This paper describes how Gamera can be used for the

recognition of ordinary bread-and-butter text documents. We present an abstraction

layer for separating the page segmentation and character recognition steps, and make

our source code freely available as a ready-to-run Gamera toolkit. The usefulness of

the new toolkit is demonstrated in experiments on the synthetic images from the

UW-I data set.

1 Introduction

The Gamera framework for document analysis and recognition [1] is not itself

a recognition system, but, rather, a software library in the Python programming

language for building document recognition systems. In combination with its

generous licensing terms and its multi platform support, this makes Gamera

perfectly suited for a number of document recognition problems not amenable

to shrink-wrapped software systems. Gamera has indeed been deployed suc-

cessfully for the recognition of texts in ancient scripts and languages [2] [3], or

for historical music notations [4] [5] [6].

While the flexibility of a software library combined with an easy to use script-

ing language allows for non-standard application areas, it also has the effect

that building a concrete recognition system requires some time and effort. Con-

sequently, Gamera has not yet been used often for recognizing ordinary text

documents, for which shrink-wrapped systems might be sufficient. It is the goal

∗Published in C. Dalitz (Ed.): “Document Image Analysis with the Gamera Framework.” Schriftenreihe des

Fachbereichs Elektrotechnik und Informatik, Hochschule Niederrhein, vol. 8, pp. 53-65, Shaker Verlag (2009)
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of the present work, to ease the deployment of Gamera for ordinary text docu-

ment recognition, while at the same time allowing for optional fine control of

the individual stages of the recognition process. We make the resulting software

freely available under the GNU general public license1.

As text recognition is the most common document recognition problem, Gam-

era already provides for this use case a built in module roman text, written be-

tween 2001 and 2005 by Karl MacMillan. This module includes a bottom-up

page segmentation algorithm and a function for converting a set of classified

glyphs to an ASCII text string. Up to now, neither its page segmentation algo-

rithm, nor its usage from a user’s point of view has been documented. A par-

ticular problem with this module is that its page segmentation algorithm is hard

coded into the module and cannot be easily replaced by a user without com-

pletely rewriting the text recognition. The present work addresses this draw-

back by introducing an object-oriented abstraction layer that allows for optional

custom implementations of specific segmentation steps.

This paper is organized as follows: section 2 describes the Gamera built in mod-

ule roman text and its page segmentation algorithm, and section 3 describes the

new, more flexible architecture as provided by our OCR toolkit. The final sec-

tion 4 describes some experiences made with our new toolkit on the synthetic

images from the UW-I image database [7].

2 Text Recognition Support built into Gamera

Text recognition can be done in Gamera with the aid of the module roman text.

This module assumes that the entire image only consists of text, which means

that non-text zones should have been removed beforehand. Here we first docu-

ment how the module roman text is applied from a user’s perspective, and then

describe its page segmentation algorithm in detail. The fact that this segmenta-

tion cannot be easily replaced by the user with a custom segmentation algorithm

was our main motivation to develop a now toolkit for OCR.

1See the section “Addons” on the Gamera home page http://gamera.informatik.hsnr.de/
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from gamera.core import *
init_gamera()

from gamera import knn, roman_text

img = load_image("textimage.png")

ccs = img.cc_analysis()

cknn = knn.kNNInteractive([], \

["aspect_ratio", "moments", "volume64regions"], 0)

cknn.from_xml_filename("trainingdata.xml")

ccs = cknn.group_and_update_list_automatic(ccs, \

max_parts_per_group=3)

page = roman_text.ocr(img, classifier=None, glyphs=ccs)

for i,sec in enumerate(page.sections):

print "section", i, "contains", len(sec.lines), "lines:"

print roman_text.make_string(sec.lines)

Listing 1: Python code demonstrating the use of roman text for text recognition.

2.1 Using roman text

The module roman text provides a function ocr(), which does the page seg-

mentation and returns a Page object. Apart from the image to be segmented, it

also needs a list of glyphs (data type Cc) as input. As these are considered to be

characters that are grouped to lines and sections in a bottom-up way, they should

have been classified beforehand with Gamera’s grouping algorithm [8] so that

diacritical signs are already attached to their main character. Alternatively, the

classification is done in the ocr() function when a classifier is passed as second

argument, but this does not allow for passing custom parameters to the grouping

algorithm.

Listing 1 shows a typical usage of the ocr() function. The returned type Page

contains a list Page.sections representing paragraphs, each of which in turn has a

property lines representing the text lines within the paragraphs. Each line stores

Character Unicode Name Class Name

! EXCLAMATION MARK exclamation.mark

2 DIGIT TWO digit.two

A LATIN CAPITAL LETTER A latin.capital.letter.a

a LATIN SMALL LETTER A latin.small.letter.a

Table 1: Examples for class names derived from the unicode character names.
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the glyphs in its property glyphs. The text lines can be passed to the function

make string() to obtain an ASCII or unicode string representation with the lines

separated by line breaks. The signature of make string is:

make_string(lines, name_lookup_func=name_lookup_unicode)

where the second argument is a translation function that takes the class name as

input and returns its string representation. When no custom function is provided,

the python core module unicodedata is used. This assumes that class names

have been chosen according to the unicode naming convention [9], with the

spaces replaced by periods, as shown in Tbl. 1.

2.2 The page segmentation algorithm in roman text

The ocr() function first segments the page into paragraphs, which are subse-

quently split into lines. This two step approach has the advantage that the line

splitting step only needs to split a single column, even in case of multicolumn

layouts, because text lines from different columns will generally be in different

paragraphs. The page segmentation algorithm is a typical “bottom-up” algo-

rithm with uses the connected components (CCs) as starting point, even though

it is different from all CC based algorithms described in the review [10].

The segmentation of the page into paragraphs is done with a simple bounding

box extending and merging procedure. The bounding boxes of selected CCs are

extended in all four directions by the average size of all CCs, which is computed

for n CCs c1, . . . , cn as

avgsize =
1

2n

n
∑

i=1

(

width(ci) + height(ci)
)

(1)

The selected CCs for this procedure are those that are not too small (black area

greater than avgsize) and not too large (both ncols and nrows less then 20 ·
avgsize). When two extended bounding boxes overlap, both boxes are consid-

ered to belong to the same paragraph. Building the transitive closure of overlap-

ping bounding boxes results in a partitioning of all bounding boxes into disjoint

paragraphs, each of which is represented by the smallest rectangle containing all

of its bounding boxes. Eventually every CC from the original image is assigned

to a paragraph with which it overlaps.

The segmentation of paragraphs into lines is done by building equivalence

classes of vertically overlapping CCs. During this partitioning, very large CCs
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(height deviates more than 40 from the average glyph height) are first omitted.

These are afterwards assigned to one of the lines with which they overlap.

The segmentation of lines into words is based on the horizontal white space

between adjacent CC bounding boxes. When it is greater than twice the average

within the line, a word break is assumed.

It should be noted that there are a number of thresholds and parameter values

used in Karl MacMillan’s algorithm which are chosen by a “rule of thumb”

rather than by a theoretical or experimental justification. Moreover, the bound-

ing box extension algorithm can also be tried for directly finding the textlines,

by extending different amounts in the vertical and horizontal direction. A more

detailed investigation of the actual effects of these parameter values seems to be

an interesting subject for future investigations.

3 The new Architecture for Text Recognition

To make the recognition process more flexible, we must allow user defined func-

tions to replace individual steps of the page segmentation process. Moreover the

user must have a way to control whether the attachment of diacritical signs (ac-

cents, dots, etc.) to characters is left to Gamera’s classifier or whether it is done

during the page segmentation step.

We therefore define a class Page that provides a public method segment for

doing the segmentation. Like roman text, we assume that the image only con-

tains text zones. In that case, the segmentation should not eventually yield para-

graphs, but text lines2. The segmentation result is stored in the public member

variable textlines. The user can then simply replace a specific segmentation step

by deriving a custom class from Page, which overwrites the segmentation step

in question with a custom method. Fig. 1 gives an overview over the classes

defined in our OCR toolkit.

While it is possible to overwrite directly the segment method, it is typically more

desirable to overwrite one of the functions called in segment, because in most

application cases only a specific segmentation step might needed to be replaced.

The substeps are implemented in the following functions (see Fig. 1):

2Even when paragraph zones are searched, like in roman text, this is only an intermediate step for eventually

finding the text lines.
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ClassifyCCs

__init__(classifier: kNNInteractive)

__call__(ccs : list<Cc>)

0, 1
1..*

def segment(self):

self.page_to_lines()

self.order_lines()

self.lines_to_chars()

if (self.classify_ccs):

for line in self.textlines:

self.chars_to_words()
line.glyphs = classify_ccs(line.glyphs)

__init__(img : Image,

Page

ccs_glyphs : list<Cc>

ccs_lines : list<Cc>

textlines : list<Textline>

img : OnebitImage

classify_ccs : ClassifyCcs

segment()

page_to_lines()

order_lines()

lines_to_chars()

chars_to_words()

glyphs : list<Cc> = None,

classify_ccs : ClassifyCcs = None)

can be user defined

Textline

bbox : Rect

glyphs : list<Cc>

words : list<list<Cc>>

__init__(bbox : Rect,

glyphs : list<Cc> = None)

sort_glyphs()

Figure 1: Class diagram of the classes involved in page segmentation. Custom algorithms can

be used by deriving a class from Page that overwrites some of the functions called in segment().

• page to lines splits the page into segments representing lines. The seg-

ments are of the Gamera image type Cc and are stored in the variable

ccs lines. The algorithm used in the base class Page is based on the bound-

ing box merging as described in section 2.2.

• order lines sorts the line segments in reading order. The base class Page

uses the Gamera plugin textline reading order, which follows [11].

• lines to chars splits each line into its characters. The results are stored in

the variable textlines, which is a list of Textline objects; the characters are

stored in Textline.glyphs. The character segmentation algorithm in the base

class Page uses a connected component segmentation followed by a rule

based merging of diacritical signs to main characters, that is described in

detail in [12].

• chars to words groups the characters in each line to words and stores the

words in the variable textlines in Textline.words. The word grouping in the

base class Page uses the method described in section 2.2.

Listing 2 shows a typical use of the OCR toolkit and how easy it is to replace
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from gamera.core import *
init_gamera()

from gamera import knn

from gamera.toolkits.ocr.ocr_toolkit import *
from gamera.toolkits.ocr.classes import Textline, Page

# use runlength smearing instead of bounding box merging

class MyPage(Page):

def page_to_lines(self):

self.ccs_lines = self.img.runlength_smearing()

# load training data into classifier

cknn = knn.kNNInteractive([], \

["aspect_ratio", "moments", "volume64regions"], 0)

cknn.from_xml_filename("trainingdata.xml")

# segment page

img = load_image("textimage.png")

page = MyPage(img)

page.segment()

# classify characters and create output text

for line in page.textlines:

line.glyphs = \

cknn.classify_and_update_list_automatic(line.glyphs)

line.sort_glyphs()

print "Text of line", textline_to_string(line)

Listing 2: Python code demonstrating the use of the OCR toolkit. In this example, the Page

class is derived to use a different page segmentation algorithm.

the page segmentation into lines by some other algorithm like the runlength

smearing provided as the plugin runlength smearing by Gamera. The function

textline to string is provided by the OCR toolkit and assumes that the naming

conventions from Tbl. 1 have been used in the training data.

In general, the classification can be done independently from the page seg-

mentation, e.g. by first calling Page.segment() and then calling kNNInterac-

tive.classify list automatic() on all Textline.glyphs in Page.textlines. In that case,

the optional argument classify ccs in the Page constructor can simply be omit-

ted. It might be however, that a classification based character segmentation is

preferable, e.g. by Gamera’s grouping algorithm that joins broken characters

and can also automatically attach (trained) diacritical signs. In that case, the

user can pass a callable class [13] as the parameter classify ccs. The signature

for calling this class must be of the form as shown in the “def segment” box in
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from gamera.core import *
init_gamera()

from gamera import knn

from gamera.toolkits.ocr.ocr_toolkit import *
from gamera.toolkits.ocr.classes \

import Textline, Page, ClassifyCCs

# segment lines into chars only by CC analysis

class MyPage(Page):

def lines_to_chars(self):

subbccs = self.img.sub_cc_analysis(self.ccs_lines)

for i,segment in enumerate(self.ccs_lines):

self.textlines.append(Textline(segment, subccs[i]))

# define classifying function

cknn = knn.kNNInteractive([], \

["aspect_ratio", "moments", "volume64regions"], 0)

cknn.from_xml_filename("trainingdata.xml")

classify = ClassifyCCs(cknn)

classify.parts_to_group = 4 # to use grouping algorithm

# segment page

img = load_image("textimage.png")

page = MyPage(img, classify_ccs=classify)

page.segment() # will call classify

# create output text

for line in page.textlines:

line.sort_glyphs()

print "Text of line", textline_to_string(line)

Listing 3: Python code demonstrating how the task of joining broken characters and diacritical

signs can be handed to the classifier rather than to Page.lines to chars().

Fig. 1. Moreover, in that case the lines to chars method should also be overwrit-

ten to only do a plain CC analysis without the diacritics merging step. Listing 3

shows an example how to let the grouping algorithm attach the diacritical signs.

4 Experiments on the UW-I Image Dataset

To demonstrate how the new toolkit works, we have measured its performance

on images from the UW English Document Image Database I, which was re-

leased by Haralick et al. in 1993 at the University of Washington [7]. This
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dataset contains both scans from machine printed journal articles and synthetic

images generated from LATEX sources. For all images, zone descriptions and

groundtruth texts are provided. There are, however, no character training data

matching the images3. We have only used the synthetically generated images to

circumvent the problem of having to deal with noise and copy margins that are

present in almost all of the real scans. So the results provide insight into what

can be achieved with the new OCR toolkit out-of-the-box on noise free images.

4.1 Test method

As the synthetic images in the UW-I dataset stem from technical journal articles,

they contain a considerable amount of mathematical formulae, which are rep-

resented in the groundtruth data by their corresponding LATEX escape sequences

[14]. As this posed particular problems for our edit distance based performance

measure (see below), we simply omitted lines containing any LATEX escape se-

quences in the groundtruth data from our performance measurement4. More-

over, we have only evaluated those parts from the images that were marked as

“text-body” in the zoning data.

To measure the accuracy of the recognition output in comparison to the ground

truth text, we used the edit distance, also known as Levenshtein distance [15]. It

measures the minimum number of insertions, deletions or substitutions neces-

sary to transform one string into the other, and can be computed in O(mn) time,

where m and n are the lengths of the two strings. This leads to the following

measure for the character recognition accuracy [16]:

accuracy =
|T | − distance(S, T )

|T |
(2)

where T is the groundtruth string, S the OCR output string, and |T | is the length

of T , i.e., the total number of characters to be recognized.

For segmenting the page into text lines, we have used the default method imple-

mented in the OCR toolkit, which is based on the Gamera plugin bbox merging.

This plugin is insofar a generalization of Karl MacMillan’s bounding box merg-

ing algorithm described in section 2.2, as it allows for choosable extensions Ex

3The character images in the UW-I Image Dataset are synthetically degraded from a different source and have

no relation to the document images.
4LATEX commands can easily be identified because they all start with a backslash character.
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and Ey in the x and y direction, respectively. We have set Ey = 0, and Ex to

twice the average size of all CCs, as defined in eq. (1).

For character classification, we used Gamera’s kNN classifier with the feature

combination aspect ratio, volume64regions, moments and nholes. This is al-

most the same feature combination that turned out to be optimal in two differ-

ent studies on different kinds of printed symbols, both with respect to the hold

out error rate [4] and n-fold cross-correlation [5]. The only difference is that

we have replaced the feature nrows (the absolute character height) with nholes,

because nrows is not scale invariant and would have required to provide training

characters in all possible sizes. Due to the small size of our training set, we had

to set k = 1 in the kNN classifier.

As training data, we have used a complete character set in lower and upper

case extracted from the document images, which we have complemented with

artificial training data generated by ourselves with LATEX. The latter was a com-

plete character set in upper and lower case letters both in Roman and italic face

at 10pt character size with the LATEX package “times”. We have rasterized the

LATEX generated postscript files with 300dpi.

4.2 Results

Our test data contained in total 208,029 characters. The summed up edit dis-

tance to the OCR output string was 37,223, which leads according to (2) to

an accuracy of only 82.1%. A closer look at the individual recognition errors

showed that almost all of these errors were due to text line segmentation errors,

mostly adjacent text lines merged into one. From a total of 4,099 text lines, 158

(about 4%) were not correctly segmented by our simple variant of the bounding

box merging algorithm.

To evaluate word and character segmentation, and the classification indepen-

dently from the text line segmentation, we have also counted the OCR error rate

for only those text lines that were correctly identified. These contained 185,221

characters and the accuracy (2) turned out to be 99.2%. This shows that both

the segmentation of lines into characters and the kNN classifier work very well.

A detailed analysis of the recognition errors showed that the kNN classifier

tended to confuse some characters that only differ in size, like upper and lower

case “s” or “w”, and some very similar characters, like apostrophe and comma.

This is easily understandable because we have only used scale invariant fea-
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tures. We therefore added heuristic rules5 based on the text line dimensions as a

post-correction step after kNN classification, which further increased the recog-

nition rate to 99.8%.

To see the effect of different page segmentation algorithms on the total accu-

racy, we have in a different test run replaced the bounding box merging seg-

mentation with runlength smearing with the default parameters provided by the

corresponding Gamera plugin runlength smearing6. In this case, the total ac-

curacy was 87.7%, which was slightly better than bbox merging. It should be

noted however that a goal directed evaluation of page segmentation algorithms

based on the edit distance of the OCR output is not very meaningful, because a

single error can lead to a high edit distance. For evaluating page segmentation

algorithms, direct methods based on pixel sets are preferable [17].

5 Conclusions and Future Work

The new OCR toolkit allows for an easy substitution of individual steps in the

text recognition process. Our experiments on the UW-I dataset indicate that

the most sensitive step is the segmentation of the page into text lines, which

again emphasizes the importance of making this step substitutable by custom

algorithms.

To save the user from the burden of implementing own page segmentation algo-

rithms, it would be desirable to have more page segmentation algorithms in the

Gamera core. While Gamera already provides three simple methods with the

plugins bbox merging, runlength smearing, and projection cutting, it would be

nice to have some of the better performing page segmentation algorithms [18].

The OCR toolkit assumes that the image contains only text zones. In practice

however, there might be additional zones containing figures or images, which

need to be removed before applying the toolkit. For this task it would be very

useful to have text/graphics separation algorithms implemented in the Gamera

core, like those cited in [19].

Another point that can be cumbersome from a user’s perspective is the need to

train the classifier. For ordinary text documents based on the Latin alphabet, this

could be made easier by providing an already prepared database, or by directly

providing a special purpose trained classifier. For the latter option, it might be

5see [12] for details
6see the Gamera plugin documentation for details
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worthwhile to consider including or wrapping third party Latin character clas-

sifiers like Tesseract [20] or gocr [21].
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